Learning how to directly drive a VGA monitor with an FPGA opens up a window for many potential projects: video games, image processing, a terminal window for a custom processor, and many more. To get started, we will need to learn how to drive the necessary signals to display things on a VGA monitor. We will then use a test circuit to display some colors on the screen. In future posts I will detail how to design pixel generating circuits for displaying custom graphics and animations. More on that soon!
Computer monitors used to be bulky cathode ray tube (CRT) devices. VGA technology was developed with driving the physical CRT in mind, so knowing how that device works can be instructive in understanding why VGA signals are driven the way they are. That being said, computer monitors nowadays are LCD monitors without a CRT, yet the VGA interfaces for these monitors still use the same signals to display images on their screens. Instead of going into the details of CRTs in this post, we will instead inspect the necessary signals for a VGA monitor and their timing diagrams, and implement a synchronization circuit in Verilog HDL.
Keep in mind that different FPGA development boards have different color depth capabilities. I will focus here on using the Basys 2 which has 8-bit color and the Basys 3 which has 12-bit color. While I am covering the Basys 2 here, in the future I will focus on and use the more capable Basys 3 for my VGA projects.
Continue reading